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Abstract 

Calculations of minimum energy configurations for aggregates of up to forty atoms, 
commonly referred to as clusters, are presented. In contrast to previous studies, random 
initial configurations have been optimised to find the lowest energy structure for a given 
number of atoms. Three different two-body, bireciprocal potential functions were used 
in these calculations and in the case of the Lennard- Jones potential, previously calculated 
results have been confirmed. New structures obtained using softer potentials are also 
presented. Minimum energy structures of small clusters containing two different types 
of atoms have also been calculated, and the relationship between the geometry of a 
cluster and the relative sizes of its constituent atoms examined. 

1. Introduction 

This paper is concerned with the description of the geometries of chemical 
species often referred to as clusters. A cluster may be defined as an aggregate of 
atoms, ions or molecules intermediate between the single, isolated species and the 
bulk material. The study of cluster geometry can be simplified by considering it in 
terms of the more general problem of the most efficient packing of spheres. 

Studies of sphere packing have yielded several results of importance to cluster 
geometry. Limits for the maximum density of a closest packed volume of space 
have been calculated [1] and it has been shown [2] that the local density of close 
packed regions may exceed that for an infinite close packed array, although such 
regions cannot be extended ad infinitum. Also of relevance to the study of cluster 
geometry was the discovery [3] that spheres packed in an icosahedral manner have 
a packing density close to that for the close packed cuboctahedron. 

Calculations of cluster geometry were pursued after experimental results 
showed that small aggregates of atoms did not have close packed structures [4-6]. 
These were performed using a two-body potential [6] in which the geometry of an 
aggregate of atoms is described in terms of the individual atom-atom interactions, 
viz.: 

i=N 
E :  E V(rij), 

i>j 
(1) 
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where N is the total number of atoms in the cluster and V(rij) is a function relating 
the distance between two atoms to the energy of their interaction. Further calculations 
of this type showed that the 13 and 55 atom icosahedron is energetically more 
favourable than the corresponding cuboctahedron [7]. This result is similar to those 
obtained from the study of random packing [8-12] and demonstrated that geometries 
with fivefold symmetry may be preferred over the more conventional close packed 
arrangements. 

The first systematic calculations of minimum energy cluster conformations 
were performed by Hoare and coworkers [13-16]. They showed that the minimum 
energy configurations of small assemblies of atoms are not based on cubic close 
packing and often contain icosahedra or pentagonal symmetry. Minimum energy 
cluster geometries were calculated using a growth sequence, in order to avoid the 
computational demands of searching for global minima. In such calculations a 
minimum energy, N-atom cluster can be used as a "seed" from which the N + 1 
atom cluster can be constructed, minimized (or "relaxed") and then used as a seed 
for the next cluster, and so on. This method of calculation does not guarantee that 
global minimum energy structures will be found. However, the clusters generated 
using these algorithms were calculated to be of lower energy than the corresponding 
close packed structure, and pentagonal symmetry and icosahedra were found to be 
important motifs in these minimum energy configurations, despite the fact that 
neither can be used to fill large volumes of space efficiently. 

Other calculations of cluster geometry which do not use a growth algorithm 
have been carried out. Minimum energy clusters containing up to 25 atoms, using 
an optimisation algorithm based upon simulated annealing, have been used [17]. A 
larger study, using a lattice-based search and optimisation procedure, was performed 
and minimum energy clusters containing up to 147 atoms were calculated. In both 
of these studies, many of the structures obtained are of lower energy than those 
proposed previously [ 16]. Recently, rearrangement mechanisms and transition state 
geometries have been proposed for small clusters (N < 150) [18] and possible cluster- 
growth schemes investigated. 

The calculations presented in this paper are concerned with minimum 
energy configurations of atomic clusters. In the light of previous results [13-19], 
it was decided that the dependence of the starting configuration on the final 
cluster geometry should be considered. Consequently, a systematic search for 
global minima, resulting from the optimisation of random starting geometries, 
has been performed in order to find the lowest energy configurations of small 
clusters. 

2. Method of calculation 

Minimum energy configurations of atomic clusters have been calculated using 
three pair potentials of the general form: 
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1 2 

V(rij ) = r.2. n r. ~. , (2) 
U tj 

where the values 6, 4 and 1 have been used for n. These will be referred to as the 
12-6,  8 - 4  and 2 - 1  potential functions, respectively. This form of  the potential 
function was chosen so that the minimum value of the function occurs when the 
separation between atoms is unity (see fig. 1). Summation of the pair-interaction 
energies, as described in (1), gives the total energy of any arrangement of atoms. 

~ - -  _ 
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Fig. 1. The three potential energy functions used to describe the atomic 
interactions in the calculation of minimum energy cluster configurations. 

Random starting configurations were optimised using a "steepest descent" 
optimisation algorithm developed by Davidson [20] and modified for use by this 
research group [21-23].  Derivatives were calculated analytically for each of the 
3 N -  6 variables while six of the atomic coordinates were set to zero to avoid the 
calculation of  rotational and translational isomers. No symmetry was imposed on 
the structure during these calculations. 

This method of  calculation was computationally demanding, and a large 
number of random initial configurations were used in order to find the lowest 
energy cluster geometry (as many as 2500 for the 12-6  potential and approximately 
100 to 500 for the 8 - 4  and 2 -  1 potentials). This methodology does not assure that 
a global minimum energy structure will be obtained, but previous work done by this 
research group [23, 24] has proved successful and it was thought that useful results 
would be obtained by proceeding in this manner. 
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3. Results of calculations performed using the 12-6 potential 

Minimum energy cluster geometries were calculated using the Lennard-  
Jones, 1 2 - 6  potential by minimising random starting configurations. The energies 
of  the lowest energy structures are in agreement with those of  Northby [19], although 
as the cluster size was increased, the frequency with which this geometry was 
obtained decreased (see table 1). For even larger clusters, the lowest energy structures 
described by Norlhby [19] were not found, due to the increase in the number of  deep 
local minima. 

The geometries obtained from these calculations show that minimum energy 
geometries can be constructed by the packing of  centred-icosahedral subunits, the 
stability of  which is well established [16]. Representative examples of  this are 
shown in fig. 2, for clusters consisting of  19, 23, 26 and 29 atoms. Each of  these 
clusters can be constructed by the fusing of  centred-icosahedra so that the shape has 
a conventional overall symmetry while still retaining some of  the features unique 
to icosahedral packing. 

4. Results  of  calculations performed using the 8 - 4  potential 

A slightly softer potential, when n = 4 in eq. (2), was also used to see how 
changing the interatomic potential function would change the minimum energy 
cluster geometry. For clusters containing up to 27 atoms, there was no difference 
between structures obtained using either of  the 1 2 - 6  or 8 - 4  potentials. However,  
for clusters containing more than 27 atoms, different geometries were calculated, 
lower in energy than if the previously obtained solutions from the 1 2 - 6  potential 
calculations were used as starting approximations. 

The difference in geometries between the two sets of  calculations is due to 
the manner in which the sites about a central double icosahedron were filled. 
Examples of minimum energy geometries, showing this systematic filling of  sites 
about a central double-icosahedron culminating in the Dsa, N = 34 cluster, are 
shown in fig. 3. It is interesting to note that the N = 29 geometry was the same for 
both sets of  calculations and that the N = 34 structure was previously suggested as 
a minimum energy structure for the 1 2 - 6  potential [13]. 

Clusters containing up to 40 atoms, calculated using this potential function 
as minima, were obtained with greater confidence than in the previous case, as can 
be seen in table 1. These minima were obtained slightly more frequently and took 
less time to calculate, although it is still possible that the calculated geometries do 
not represent global minima. 

The minimum energy geometries of  some larger clusters are shown in fig. 4. 
An increase in the number of  atoms fully encapsulated within the cluster boundary 
can be seen for these larger clusters. The largest cluster calculated, consisting of  
40 atoms, can be described as an uncentred icosahedron surrounded by an incomplete 
dodecahedral framework. This is an important structure since it can be related to 
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(a) (b) 

U 

(c) (d) 

Fig. 2. Minimum energy cluster geometries calculated using 
the 1 2 - 6  interatomic potential function. In this and 
subsequent figures, atoms fully enclosed within the cluster 
are shown with a different shading pattern and non-bonded 
for the sake of clarity. (a) TheN = 19, Dsd double-icosahedron. 
(b) The N = 23, D3d tri-icosahedron. (c) The N = 26, T d 
tetra-icosahedron. (d) The N = 29, D3d penta-icosahedron. 

the N = 55 Mackay icosahedron [3], expected to be the minimum energy geometry 
for a cluster of 55 atoms [19]. Calculations were not performed for clusters containing 
greater than 40 atoms due to the increased computational requirements for the 
location of global minima. 
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(a) 

(b) 

(c) 

Fig. 3. Some minimum energy cluster geometries calculated using the 
8 - 4  interatomic potential function. (a) Two views of the N = 28 cluster, 
different to that obtained using the 12-6  interatomic potential function. 
(b) Two views of the N = 32 cluster. Note the systematic filling of sites 
about the central double-icosahedron. (c) Two views of the Dsd 34-atom 
cluster; the sites about the central double-icosahedron are now fully occupied. 



(a) 

(b) 

(c) 

Fig. 4. Some minimum energy cluster geometries calculated using the 8 - 4  interatomic 
potential function. (a) Two views of the N = 36 geometry, shown looking down the pseudo- 
C 5 axis of the double icosahedral framework and viewed perpendicular to this axis, showing 
extra capping atoms. (b) Two views of the N = 38 geometry, shown looking down the C 5 
axis of the icosahedral core of enclosed atoms and shown perpendicular to this. (c) Two 
views of the N = 40 geometry, the minimum energy structure shown looking down the 
approximate C 5 axis of the enclosed icosahedron and shown perpendicular to this. 

167 
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5. Results of calculations performed using the 2 -1  potential 

The softest interatomic potential function used to calculate cluster geometry 
was the 2 - I  potential, that is, when n = l in eq. (2). This potential function has 
been used previously to calculatc the structures of  boron hydride molecules [25-27]  
and it was decided that its use would further test the effect of  the interatomic 
potential used upon the minimum energy geometry. 

Global minima were obtained more frequently than in the two preceding sets 
of  calculations and in most cases calculated geometries are quite different to those 
obtained previously. In general, the tendency for geometries to be based upon the 
icosahedron were not calculated, for example the N = 9 cluster was calculated to be 
a bicapped pentagonal bipyramid using the harder potentials, but was calculated to 
be a tricapped trigonal prism using this potential function. Exceptions to this are 
the geometries obtained for the N = 3 - 7 ,  13, 23, 26 and 29 clusters, which are the 
same as those calculated using the 1 2 - 6  and 8 - 4  potentials. 

The geometries calculated for N = 1 4 - 1 9  clusters are not based upon the 
capping of  the faces of  the centred-icosahedron, as found in the previous calculations. 
Instead, additional atoms add to the cluster and are in contact with the central 
atom, which results in different structures. A good example of  this is the N = 15 
cluster (fig. 5(a)) which is a bicapped, centred hexagonal antiprism and not a 
bicapped centred icosahedron as was previously calculated. Similarly, the N = 17 
cluster is a {l, 6, l, 6', 3} polyhedron (fig. 5(b)), and the N =  18 cluster (fig. 5(c)) 
contains two enclosed atoms, at a cluster size one less than calculated using the 
harder potentials. In general, clusters calculated using the 2 - I  potential contain 
more encapsulated atoms than those calculated using the harder 1 2 - 6  and 8 - 4  
potentials. 

A tetrahedron of  atoms is encapsulated within the N = 24 structure (fig. 6(a)), 
although the structure does not have overall tetrahedral symmetry as does the 
N = 26 structure calculated using the 1 2 - 6  potential, which also contains a tetrahedral 
core of atoms. This lack of relationship between the symmetry of the core and the 
outer shell of  atoms can also be seen in the N = 28 cluster (fig. 6(b)) which contains 
an enclosed octahedral core, a core polyhedron not previously calculated to be an 
energy minimum. The N = 30 structure (fig. 6(c)) is perhaps the best example of  
the difference in orientation between the core and outer shell of  the cluster. This 
cluster consists of  an octahedron surrounded by atoms which form a snub cube [28], 
although the symmetry axes of  both structures are not coincident. 

This somewhat unexpected feature is observed in the clusters with N = 3 0 - 3 4  
atoms; again the orientation of  the inner core is unusual with respect to the 
arrangement of  the atoms on the outer surface of  the cluster (fig. 7(a)). Although 
the symmetry of  the enclosed octahedron is obvious, it is not reflected in the 
arrangement of  the outer shell of  atoms. In each of  these structures, regions of  five- 
and six-coordination exist and the structures are of  a similar nature to those obtained 
for soft packing [8,29]. 
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(a) (b) 

(c) 

Fig. 5. Cluster geometries calculated using the 2 - 1  interatomic potential 
function. (a) The N = 15 structure. A bicapped, centred hexagonal 
antiprism. (b) The { 1, 6, 1, 6', 3 } polyhedron calculated for the N = 17 
cluster. (c) The N =  18 cluster showing two encapsulated atoms. 

As cluster size is increased, so too is the number of six-coordinate atoms on 
the cluster surface, evident in the N = 39 structure (fig. 7(b)) and the formation of  
an almost-square face, instead of  adjacent pentagonal faces, has occurred. The 
structure calculated for N = 40 (fig. 7(c)) is quite unusual since there is an uncapped 
pentagonal face in this structure. Its core polyhedron is distorted from the ideal 
tricapped trigonal prism and does not possess a C3 axis. In the N = 40 cluster, a core 
atom is close to the uncapped pentagonal face, forming an inverted cap and maximum 
connectivity is preserved. Calculations beyond N = 40 were not performed, although 
it is likely that global minima could still be found with confidence; however, as was 
the case for the previous calculations, there is an increase in the number of  local 
minima found with the increase in cluster size. 
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Fig. 6. Minimum energy structures calculated using the 2 - 1  potential. (a) Two views 
of the N = 24 structure showing the enclosed tetrahedron of atoms. (b) Two views of 
the N = 28 cluster which contains an encapsulated octahedron. Note the orientation 
of the core to the outer shell of atoms. (c) Two views of the N = 30 structure, an 
octahedral core surrounded by a shell of atoms arranged in the shape of a snub cube. 
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(a) 
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Fig. 7. Larger cluster geometries calculated using the 2 -1  potential. (a) Two views 
of the N = 34 cluster. Note the arrangement of the outer shell with respect to the 
encapsulated octahedron. (b) Two views of the N = 39 cluster showing the tricapped 
trigonal prism of core atoms. (c) Two views of the N = 40 structure showing the 
uncapped pentagonal face and distorted lxicapped trigonal prism of core atoms. 
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6. Geometries of clusters containing two different types of atom 

A logical continuation of the work described in the previous section 
is to consider the minimum energy configurations of clusters composed of more 
than one type of  atom. This is chemically sensible and clusters of  this type are 
known [30-33].  The method of calculation used was essentially the same as that 
described above, except that three potentials governing the a tom-a tom interactions 
within the cluster were required. These functions were used to account for the 
X - X ,  Y - Y  and X - Y  interactions within a cluster consisting of  X and Y type atoms, 
that is, the cluster is of  the general type XxYy. Cluster sizes from N = 13 to 19 for 
various combinations of X and Y atoms have been studied (where N = x + y). The 
structures obtained from the previous calculations, suitably substituted, were used 
as starting approximations for the calculations. In addition, calculations using random 
starting approximations were done to establish that the lowest energy structures 
were found. The potential functions used to describe the interactions between the 
two different types of  atom were of the general Lennard-Jones  type. This avoids 
the complication of  deciding upon new types of potential functions to model the 
atomic interactions and allows for comparison with the calculations already presented. 

The first of  the calculations were performed using potential functions in 
which the minimum energy occurred at r values of 0.8, 0.9 and 1.0 for Y - Y ,  X - Y  
and X - X  interactions, respectively. The potential functions which give these minima 
are: 

0.06872 0.52429 
V(rij  ) - r.1. 2 r6. Y - Y interactions, (3) 

U U 

0.28243 1.06288 
V(ri j  ) - r.1. 2 r6. X - Y interactions, (4) 

t j  , j  

and the 1 2 - 6  potential described in section 3 was used to model X - X  interactions. 
Substituted 13-atom clusters were first studied using this set of interatomic 

potentials and, not surprisingly, it was found that the smaller Y atom preferentially 
occupies the central position of the icosahedron. This is expected since the centre- 
vertex distance is about 0.95 of the ver tex-ver tex  length. It was also found that as 
the degree of  substitution in the cluster increased, the minimum energy structures 
were those in which the Y atoms occupied sites close together, that is, Y atoms 
tended to congregate and form a subcluster within the framework of the larger 
cluster. 

The calculated minimum energy geometries of  the majority of clusters studied 
were not significantly different to the parent, unsubstituted cluster. However, the 
substituted N = 16 atom cluster shows some eclipsing of  the plane of  atoms capping 
the icosahedron (fig. 8(a)) and the structure of  the substituted 17-atom cluster was 
different to the parent cluster. The minimum energy N = 17 cluster is unusual since 
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(a) 

(b) (c) 

Fig. 8. The minimum energy geometries of some substituted clusters calculated 
when the size of the Y atom is 0.8 of the size of the X atom. In this and 
subsequent pictures of substituted clusters, the Y atoms are shaded differently, 
and for the sake of simplicity are drawn without nearest-neighbour contacts. (a) 
The minimum energy geometry of the X13Y 3 cluster showing the eclipsed plane 
of capping atoms. (b) The X13 Y4 cluster showing the Y atoms in the plane above 
the icosahedron; the analogous unsubstituted cluster is also shown for comparison. 

it does not follow the growth scheme expected from the addition of atoms to the 
icosahedron culminating in the double-icosahedron [14,17, 19,34]. In contrast, and 
as a consequence of the shorter X - Y  and Y-Y equilibrium distances in the substituted 
cluster, the 17-atom minimum energy X13Y4 cluster has a geometry closer to that 
expected if the previously suggested [13] growth scheme was followed (fig. 8(b)). 
These represent the only anomalies for this set of calculations, and so clusters 
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containing more than 19 atoms were not studied; instead, the ratio of  the size of  
X with respect to Y was increased to see if this had any effect on cluster geometry. 

A rather more extreme difference in X and Y atom sizes was used in these 
calculations; the radii of  Y atoms were treated as being half that of  the X atoms. 
Such a large difference in atom sizes is perhaps unrealistic, the only cases for which 
they may be valid would probably involve ionic species and it is doubtful that a 
Lennard- Jones  potential would describe the interactions between such species. 
However,  the preference for the formation of  Y atom subclusters calculated above 
can be tested and new minimum energy structures may be calculated. In particular, 
the relationship between atom size and the formation of  structures with pentagonal 
symmetry can be further examined. 

The X - Y  and Y - Y  interatomic potentials used were: 

1 2 
- Y -  Y interactions, (5) V(rij ) (2ri j )12 (2rij )6 

0.031673 0.3559571 
V(r  q ) - r l 2 r6 " X - Y interactions, (6) 

t j  t j  

and the same potential as described above was used for the X - X  interactions. 
Because of  the large number of  possible calculations, only those for the substitute 
19-atom cluster were performed. 

The calculations were performed in the same manner as described above. A 
substituted double-icosahedron was used as the starting approximation; however,  
the presence of  much smaller Y atoms resulted in very different minimum energy 
structures and random starting approximations were also used to check whether or 
not the minima found indeed had the lowest energies. In most cases, the double- 
icosahedral starting approximation yielded only local minima. 

Those minimum energy clusters which have interesting structures will be 
considered, the first of  which is X16Y3 (fig. 9(a)) which has a mirror plane but is 
very different to the double-icosahedron. The smaller Y atoms in this cluster are 
encapsulated within an outer shell of  X atoms, as is the case for the structure of  the 
X15Y4 cluster (fig. 9(b)). The tendency of the Y atoms to form subclusters, as found 
in the other calculations of  XxYy clusters above, is seen in all of  the clusters calculated 
when the Y atom is half the size of  the X atom. This is no more evident than in the 
X~3Y6 cluster (fig, 9(c)), in which the Y atoms form an octahedron about which the 
X atoms are distributed, in a manner analogous to that calculated by this group [24] 
for a minimum energy stereochemistry of  M6(CO)I 3 (fig. 9(d)). 

The structure of  the X12Y7 cluster (fig. 10(a)) is interesting since the Y atoms 
do not form a pentagonal bipyramid as might have been expected; rather they form 
a capped octahedron. This tendency to form structures in which the Y atoms have 
a geometry based on the octahedron, and not the pentagonal bipyramid, is also seen 
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in the structure of the Xll Y8 cluster (fig. lO(b)) in which the Y atoms are arranged 
in a bicapped octahedron. Following this trend, the XloY9 cluster (fig. lO(c)) contains 
two face-sharing octahedra of Y atoms, surrounded by an almost anticuboctahedral 
arrangement of X atoms. 

7. Conclusion 

Minimum energy geometries for several types of clusters have been studied. 
The shape of clusters containing N similar atoms (3 < N >_ 40) have been calculated 
using three different bireciprocal potential functions. Configurations of clusters 
which contain two different types of atom have also been calculated (for N_< 19 
atoms) using modified 12-6 potentials to model the different types of a tom-a tom 
interactions. In each calculation, all 3 N - 6  positional variables were treated 
independently without the imposition of any symmetry. For each cluster, many 
random starting approximations were minimised in order to find the lowest (and 
hopefully global) energy structure. For the 2-1 and 8 - 4  potential functions, this 
proved successful, with the lowest energy structure occurring several times in a set 
of calculations. Correspondingly, the greater the number of occurrences of this 
minimum, the greater the confidence in it being global, although this is no guarantee. 
The number of calculations performed for each potential for each value of N and 
the number of occurrences of the lowest energy structure are given in table 1. The 
inefficiency of this approach is obvious, but appears necessary if results from other 
calculations are to be verified, and provides a yardstick by which other methods can 
be compared. In this model, atoms are treated independently, allowed to interact 
freely and the minimum energy geometry solved globally rather than locally. That 
a global minimum is difficult to find is a measure of the magnitude of the problem, 
not a deficiency of the approach. 

The geometries calculated for the two "harder" potentials show a tendency 
for the formation of pockets of local fivefold symmetry. The "soft" potential, on the 
other hand, was less likely to form structures in which the dominant symmetry was 
fivefold, but often contained many five-coordinate atoms. In particular, the icosahedron 
played an important part in the prevalent geometries, providing a structural building 
block around which many structures were based. Pertinent examples of this were 
the structures for N = 13, 23, 26 and 29, for which the same polyicosahedral structures 
were calculated for each potential function used. 

Perhaps the biggest problem with the use of these potential functions is their 
tendency to encourage "bond" formation and, as a result, overestimating the number 
of nearest-neighbour contacts present in a structure. Cluster geometries calculated 
using the 12-6 potential do agree with those observed for noble gas clusters [35], 
but are less successful for other cluster types [30]. A good example of this can be 
seen in the Pt19 structure, which is a {1, 5, 1, 5, 1, 5, 1} polyhedron and not a 
double-icosahedron as calculated using the 12-6 potential [31]. 
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Table 1 

A summary of the number of calculations performed, the number of times a global minimum 
energy structure was found, and that energy. The column N gives the number of atoms in the 
cluster, T is the number of calculations performed for that value of N, F is the number of times 
the lowest energy structure was found, and IEI is the (positive) value of that lowest energy. 

Results for the 2-1 Results for the 8 - 4  Results for the 12-6 
potential calculations potential calculations potential calculations a 

N 7' F [E I 7" F IE[ T F IEI 

3 50 50 3.0000 50 44 3.0000 50 38 3.0000 
4 50 50 6.0000 50 43 6.0000 50 40 6.0000 
5 50 50 9.8767 50 43 9.2685 50 39 9.1039 
6 50 50 14.7712 50 45 13.3385 50 6 12.7121 
7 50 50 20.4190 50 11 17.3579 50 9 16.5054 
8 50 50 27.0120 50 28 21.5536 50 13 19.8215 
9 50 46 34.4867 50 7 26.1769 50 3 24.1134 

10 50 24 42.7733 50 7 31.2964 50 4 28.4225 
11 50 50 52.0787 50 15 36.6089 50 2 32.7660 
12 50 48 62.1683 50 22 42.9844 50 2 37.9676 
13 100 100 73.3566 100 42 50.4208 100 4 44.3268 
14 100 100 84.9749 100 72 55.0978 100 9 47.8451 
15 100 100 97.6125 100 27 60.7825 100 4 52.3226 
16 100 95 110.9957 100 23 66.6609 100 3 56.8157 
17 100 63 125.2110 100 3 72.7205 500 1 61.3180 
18 100 68 140.1846 100 10 79.6984 250 1 66.5309 
19 100 70 156.1240 500 64 87.4067 500 2 72.6598 
20 100 64 172.8500 200 40 93.7617 200 3 77.1770 
21 100 35 190.3933 250 3 99.9702 250 2 81.6846 
22 100 40 208.7537 200 23 107.3897 200 1 86.8097 
23 100 27 228.0988 100 9 115.6053 500 1 92.8445 
24 100 83 248.1847 200 21 122.2177 200 1 97.3488 
25 100 77 269.0686 200 20 129.6841 700 1 102.3727 
26 100 80 290.8581 200 12 138.2707 1250 0 108.3156 b 
27 100 12 313.1490 100 6 144.9548 1250 1 112.8736 
28 I00 32 336.4765 I00 6 152.4361 500 1 117.8224 
29 100 6 360.6191 200 3 161.0145 1000 0 123.5873 b 
30 100 88 385.6844 300 2 167.9429 2500 0 128.1816 c 
31 100 80 411.3207 200 3 175.5241 1000 0 133.5864 a 
32 100 66 437.8247 200 7 184.1283 1000 0 139.6355 d 
33 100 26 465.2363 100 4 191.8851 1000 0 144.8427 a 
34 100 42 493.2831 300 6 200.6877 1500 0 149.9970 c 
35 100 38 522.1111 300 7 207.8171 1500 0 155.0781 c 
36 100 37 551.7809 200 2 215.7403 500 0 160.8384 c 
37 100 36 582.2931 400 1 224.1307 500 0 166.9130 c 
38 100 30 613.6250 300 1 232.2865 500 0 172.2006 c 
39 100 52 645.7353 400 1 241.1656 
40 300 130 678.6294 500 4 249.6569 

a Energies quoted, unless marked otherwise, are the same as those calculated by Northby [19]. 
b The lowest energy structure found from the 8 - 4  potential calculation was used as a starting approximation to 

calculate this structure. 
c The energy given is the lowest value calculated in this work. This energy is higher than that obtained using a 

lattice-based search and optimisation procedure [19]. 
d The lowest energy structure was not found after the quoted number of calculations using random starting 

approximations were performed. Instead, the structure obtained by minimising either an N + 1 or N - 1 starting 
approximation gave a structure of lowest energy. 
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Another example of  the failure to reproduce known chemical structure is the 
R105 structure of  boron [36] which, although polyicosahedral, is less compact than 
that calculated using the 1 2 - 6  potential and was not found even as a local minimum. 
Other examples are the structures of  N = 37 and 38 clusters [30, 32] containing both 
gold and silver atoms. These clusters are made up of  vertex-sharing icosahedra but 
are not as compact as the structures anticipated using the method described here. 
Instead, each of  these clusters may be better considered as "cluster of  clusters" (or 
supracluster) [30], which would require a more complex set of  potential functions 
if they were to be modelled. 

The potential functions employed in this work ignore the effects of  many- 
body interactions. They may not affect ground-state geometries [17], but their 
inclusion is important if a more realistic model is to be developed [37]. However,  
the simplicity afforded by Ihe neglect of such interactions enables the problem to 
be kept computationally simple. Of perhaps more importance to this work is the 
need for calibration of the calcalated energies in order to assess the real difference 
in energies between structures and the extent to which a structure can be less 
energetically favourable than the lowest calculated yet still be plausible. 

The basic model has been extended to describe the geometries of  clusters 
containing two different types of  atom. There are other ways in which these clusters 
could be modelled which take into account the physical properties of  the atoms 
making up the cluster, for example a pair potential incorporating charge has been 
used to model small clusters of  [TinO2n_l] + [38]. Bimetallic clusters have been 
modelled using intermolecular potentials which include terms accounting for the 
electron densities of the different atoms [34], and water-ion clusters have been 
modelled using non-additive intermolecular potentials [39]. 

It is also possible that three-body interactions may assume greater importance 
in XxY>. clusters. Superficially, one can imagine that there might be a greater third 
body interaction due to one of the atoms compared to the other, which may influence 
the geometry of the molecule. It has been shown that three-body interactions are 
significant for certain geometries of aromatic-rare gas clusters [40] and the assumption 
that they do not affect the ground-state geometry of (X only) N atom clusters [17] 
may not be valid for XxYy clusters. 

Despite the simplicity of  the model used in the calculations for XxYy clusters 
when compared to these more complex types of  calculation, interesting and valuable 
results have been obtained. The polyicosahedral structures calculated to be global 
minima for Xx clusters are not necessarily valid for those of  the type XxYy, especially 
when the difference in the sizes of  X and Y is large. Another general conclusion 
gained from this work is that the smaller atoms tend to congregate in the interior 
of  the cluster. The formation of  a subcluster of  smaller atoms surrounded by a shell 
consisting of the larger atoms can be seen in all of  the minimum energy clusters 
calculated in this work. Furthermore, these core polyhedra may not be the same as 
those calculated when the enclosed atoms are of  the same type as those on the 
cluster surface. 
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This work demonstrates the dependence of  cluster geometry on the type of  
functions used to model a tom-a tom interactions, and also its dependence on the 
relative sizes of  the constituent atoms. Some results obtained previously [19] have 
been verified without making a priori assumptions as to the most probable outcome 
and new structures, for both soft-packed and substituted clusters, have been found. 
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